欢迎光临浙江省碳材料技术研究重点实验室!

加入收藏 | 设为首页 | 联系我们

机构人员
站内搜索
咨询服务
MORE +

浙江省碳材料技术研究重点实验室
电话:+86-0577-88373017
传真:+86-0577-88373017
地址:浙江省温州市瓯海区茶山高教园区温州大学南校区3号楼C座

邮箱:nanolab@wzu.edu.cn
邮编:325027
 

当前位置: 网站首页 > 机构人员 > 研究队伍
研究队伍
钱金杰编辑日期:2023-11-07 作者: 阅读次数:[关 闭]

3BF80

钱金杰 Jinjie Qian 副研究员

所属学院:化学与材料工程学院

导师类别:硕士生导师

科研方向:金属有机框架,碳纳米材料

联系方式:jinjieqian@wzu.edu.cn

招生学院:化学与材料工程学院

个人简述

博士、副研究员、硕士生导师,全球Top2%顶尖科学家(2022、2023)。2006年进入中国矿业大学化工学院应用化学系学习。2010年进入中国科学院福建物质结构研究所学习,师从洪茂椿院士,主要从事金属铟有机框架化合物的结构及其吸附性能研究,并于2015年获理学博士学位。同年加入温州大学,主要从事金属有机框架材料及其衍生碳纳米材料在能量储存和催化上的应用。

论文专利:至今已在Nature Commun., Coordin. Chem. Rev., Adv. Sci., Nano Energy, Small, Nano Lett., Adv. Funct. Mater., J. Mater. Chem. A, Chem. Engi. J., Chem. Commun., Sci. China Mater., ChemSusChem, Carbon, Green Energy Environ., J. Colloid Interf. Sci., J. Power Sources, ACS Appl. Mater. Inter.等国际权威刊物上发表SCI论文141篇,应邀为JACS, Angew., Adv. Mater., Adv. Sci., Nano Energy, Small Methods || CC, JMCA/JMCC, Nanoscale, MCF, Dalton || ACSAMI/SCE, IC, CGD, Langmuir || CSC, CEJ || CCR, ACBE, CEJ, Carbon, GEE, Fuel, SABC, ASS, EA || SCM等50+国际期刊审稿,论文引用5200+次, H-index为35, i10-index为99 (Google Scholar)。。

项目获奖:先后主持国家自然科学基金项目1项、浙江省自然科学基金1项、结构化学国家重点实验室研究项目1项、温州市基础性科研项目1项、云南省地方本科高校基础研究重点项目1项、温大-北化工横向项目1项等,参与国家自然科学基金面上项目3项。NKFI Reviewer。指导研究生获浙江省优秀硕士学位论文1篇,国家奖学金9人次。

学科领域

无机化学

教育背景

2010.09-2015.07 中国科学院福建物质结构研究所无机化学理学博士

2006.09-2010.07 中国矿业大学应用化学理学学士

工作经历

2018.12-至今 温州大学化学与材料工程学院副研究员

2015.07-2018.12 温州大学 化学与材料工程学院 讲师

主要荣誉

2020年浙江省优秀硕士学位论文(钱金杰 李欢)

2021年第十三届浙江省大学生科技竞赛 三等奖 (钱金杰 余小春——赵晨旭 朱幸晨 诸葛温怀 朱悦)

2021年第十七届“挑战杯”交通银行大学生课外学术科技作品竞赛 三等奖 (钱金杰)

科研项目

[2]国家自然科学基金青年项目:多功能金属铟有机框架材料的合成及其性能研究,2017.01-2019.12(已结题);

[1]浙江省自然科学基金青年项目:金属铟有机框架材料在二氧化碳分离中的应用,2016.01-2018.12(已结题);

先后主持国家自然科学基金项目1项、浙江省自然科学基金1项、结构化学国家重点实验室研究项目1项、温州市基础性科研项目1项、云南省地方本科高校基础研究重点项目1项、北化工-温大横向项目1项等,参与国家自然科学基金面上项目3项。

主要论文

2023

[15]. Anrui Dong, Yu Lin, Yuanyuan Guo, Dandan Chen, Xian Wang, Yongjie Ge, Qipeng Li, Jinjie Qian*, Immobilization of Iron Phthalocyanine on MOF-derived N-doped Carbon for Promoting Oxygen Reduction in Zinc-Air Battery. J Colloid. Interf. Sci., 2023.

[14]. Shengsheng Huang, Qizhe He, Hongwei Li, Jinjie Qian*, Wei Xu and Ting-Ting Li*, A supported polymeric organic framework composed of dual electrocatalytically active sites for high-performance carbon dioxide electroreduction. Inorg. Chem. Front., 2023, 10, 3963-3973.

[13]. Li Zhong, Lixiang He, Ni Wang*, Yunjian Chen, Xingchen Xie, Baolong Sun, Jinjie Qian*, Sridhar Komarneni*, Wencheng Hu, Preparation of metal-organic framework from in situ self-sacrificial stainless-steel matrix for efficient water oxidation. Appl. Catal. B-Environ., 2023, 325, 122343.

[12]. Yanqiong Shen, Jin Ma, Shengjian Li, Jinjie Qian*, Qipeng Li*, Highly luminescent and thermostable R6G@DUT-52 composite for sensing Fe3+ ion and white light emitting diode. Chem. Eng. J., 2023, 466, 143290.

[11]. Cheng Han, Xiaodeng Zhang, Shengsheng Huang, Yue Hu, Zhi Yang, Ting-Ting Li*, Qipeng Li*, Jinjie Qian*, MOF-on-MOF-Derived Hollow Co3O4/In2O3 Nanostructure for Efficient Photocatalytic CO2 Reduction. Adv. Sci., 2023, 10, 2300797.

[10]. Yuandong Yang, Qiuhong Sun, Jinhang Xue, Shaojie Xu, Lujiao Mao, Tingting Miao, Linjie Zhang, Jinjie Qian*, MOF-derived N-doped carbon nanosticks coupled with Fe phthalocyanines for efficient oxygen reduction. Chem. Eng. J., 2023, 464, 142668.

[9]. Lujiao Mao, Yongjie Ge*, Dandan Chen, Yuandong Yang, Shaojie Xu, Jinhang Xue, Kuikui Xiao, Xuemei Zhou, Jinjie Qian*, Zhi Yang*, Ligand-induced hollow MOF-derived carbon nanomaterials with abundant Fe species for efficient oxygen reduction. Sci. China Mater., 2023, 66, 2257-2265.

[8]. Xian Wang, Zhe Zhang, Yongjie Ge*, Kui Shen, Jinjie Qian*, Few-Layer Ag-Coated Ordered Mesoporous Pt Nanocrystals for Ethanol Oxidation. Small Struct., 2023, 220039.

[7]. Shaojie Xu, Anrui Dong, Yue Hu, Zhi Yang, Shaoming Huang, Jinjie Qian*, Multidimensional MOF-derived carbon nanomaterials for multifunctional applications. J. Mater. Chem. A., 2023, 11, 9721.

[6]. Qi Huang, Yun Yang*, Jinjie Qian*, Structure-directed growth and morphology of multifunctional metal-organic frameworks. Coordin. Chem. Rev., 2023, 484, 215101.

[5]. Yanqiong Shen, Qingsong Yang *, Yongqiang Gao, Jinjie Qian*, Qipeng Li*, Robust DUT-67 material for highly efficient removal of the Cr(VI) ion from an aqueous solution. Front. Chem., 2023, 11, 1148073.

[4]. Jinhang Xue, Cheng Han, Yuandong Yang, Shaojie Xu, Qipeng Li, Huagui Nie, Jinjie Qian*, Zhi Yang*, Partially Oxidized Carbon Nanomaterials with Ni/NiO Heterostructures as Durable Glucose Sensors. Inorg. Chem., 2023, 62, 7, 3288-3296.

[3]. Dandan Chen, Cheng Han, Qiuhong Sun, Junyang Ding, Qi Huang, Ting-Ting Li, Yue Hu, Jinjie Qian*, Shaoming Huang, Bimetallic AgNi nanoparticles anchored onto MOF-derived nitrogen-doped carbon nanostrips for efficient hydrogen evolution. Green Energy & Environment, 2023, 8, 258-266.

[2]. Anrui Dong, Dandan Chen, Qipeng Li*, Jinjie Qian*, Metal-Organic Frameworks for Greenhouse Gas Applications. Small, 2023, 19, 2201550.

[1]. Lujiao Mao, Dandan Chen, Yuanyuan Guo, Cheng Han, Xuemei Zhou, Zhi Yang, Shaoming Huang, JinjieQian*, Different Growth Behavior of MOF-on-MOF Heterostructures to Enhance Oxygen Evolution. ChemSusChem, 2023, 16, e202201947.


2022

[12]. Cheng Han, Xingchen Zhu, Junyang Ding, Tingting Miao*, Shaoming Huang, Jinjie Qian*, MOF-Derived Pt/ZrO2 Carbon Electrocatalyst for Efficient Hydrogen Evolution. Inorg. Chem., 2022, 61, 46, 18350-18354.

[11]. Shuang Yu, Shuo Yang*, Dong Cai*, Huagui Nie, Xuemei Zhou, Tingting Li, Ce Liang, Haohao Wang, Yangyang Dong, Rui Xu, Guoyong Fang, Jinjie Qian, Yongjie Ge, Yue Hu, Zhi Yang*, Regulating f orbital of Tb electronic reservoir to activate stepwise and dual-directional sulfur conversion reaction. InfoMat., 2023; 5( 1):e12381.

[10]. Hongjie Zhang, Wenhuai Zhuge, Feng Yang, Lixing Kang, Shuchen Zhang, Ran Du, Jinjie Qian, Zhi Yang, Yagang Yao, Pan Li*, Yue Hu*, Jin Zhang*, Diameter-Selective Density Enhancement of Horizontally Aligned Single-Walled Carbon Nanotube Arrays by Temperature-Mediated Method. Adv. Funct. Mater., 2022, 32, 2209391.

[9]. Lulu Chai, Xian Wang, Yue Hu, Xifei Li, Shaoming Huang, Junqing Pan*, Jinjie Qian*, Xueliang Sun*, In-MOF-Derived Hierarchically Hollow Carbon Nanostraws for Advanced Zinc-Iodine Batteries. Adv. Sci., 2022, 9, 2105063.

[8]. Dandan Chen, Linsha Wei, Yihan Yu, Lei Zhao, Qiuhong Sun, Cheng Han, Jianmei Lu*, Huagui Nie, Li-Xiong Shao, Jinjie Qian*, Zhi Yang*, Size-Selective Suzuki-Miyaura Coupling Reaction over Ultrafine Pd Nanocatalysts in a Water-Stable Indium-Organic Framework. Inorg. Chem., 2022, 61, 15320-15324.

[7]. Qiuhong Sun, Dandan Chen, Qi Huang, Shaoming Huang, Jinjie Qian*, Carbon nanotubes anchored onto hollow carbon for efficient oxygen reduction. Sci. China Mater., 2023, 66, 641-650.

[6]. Ying Wang, Taibin Wang, Hongjie Zhang, Dayan Liu, Jinjie Qian, Ran Du, Hua Xu, Shuchen Zhang, Zhi Yang, Qiuchen Zhao*, Yue Hu*, and Shaoming Huang*, Selected-Area Fabrication of a Single-Walled Carbon Nanotube Schottky Junction with Tunable Gate Rectification. J. Phys. Chem. Lett., 2022, 13, 32, 7541-7546.

[5]. Dandan Chen, Qiuhong Sun, Cheng Han, Yuanyuan Guo, Qi Huang, William A. Goddard, III, Jinjie Qian *, Enhanced oxygen evolution catalyzed by in situ formed Fe-doped Ni oxyhydroxides in carbon nanotubes. J. Mater. Chem. A, 2022, 10, 16007-16015.

[4]. Lulu Chai, Junqing Pan*, Xiaoyang Zhu, Yanzhi Sun, Xiaoguang Liu, Wei Li, Jinjie Qian, Xifei Li*, and Xueliang Sun*, Ion Motor as a New Universal Strategy for the Boosting the Performance of Zn-Ion Batteries. ACS Appl. Mater. Interfaces, 2022, 14, 27, 30839-30846.

[3]. Yuandong Yang, Qi Huang, Qiuhong Sun, Jinhang Xue, Shaojie Xu, Lujiao Mao, Xuemei Zhou,Dai Yu*, Qipeng Li, Jinjie Qian*, Fe-Induced Coordination Environment Regulation in MOF-Derived Carbon Materials for Reduction. ACS Sustainable Chem. Eng., 2022, 10, 26, 8641-8649.

[2]. Shaojie Xu, Qi Huang, Jinhang Xue, Yuandong Yang, Lujiao Mao, Shaoming Huang, Jinjie Qian*, Morphologically Controlled Metal-Organic Framework-Derived FeNi Oxides for Efficient Water Oxidation. Inorg. Chem., 2022, 61, 23, 8909-8919.

[1]. Dandan Chen, Qi Huang, Junyang Ding, Ting-Ting Li, Dai Yu, Huagui Nie, Jinjie Qian*, Zhi Yang*, Heteroepitaxial metal-organic frameworks derived cobalt and nitrogen codoped carbon nanosheets to boost oxygen reduction. J. Colloid. Interf. Sci., 2022, 623, 1210-1219.


2021

[24]. Y. Mei, et al., Inorg. Chem., 10.1021/acs.inorgchem.1c03498. (5.165, CA*)

[23]. Q. Sun, et al., SCIENCE CHINA Materials, 10.1007/s40843-021-1933-4. (8.273, CA*)

[22]. Q. Huang et al., Carbon, 10.1016/j.carbon.2021.11.062. (9.594, CA*)

[21]. L. Zhong. et al., ACS Appl. Mater. Inter., 10.1021/acsami.1c17229. (9.229, CA*)

[20]. C. Han, et al., ACS Appl. Nano Mater., 10.1021/acsanm.1c02659. (5.097, CA*)

[19]. Y. Hu, et al., Small, 10.1002/smll.202103433. (13.281)

[18]. Y. Guo, et al., J. Colloid Interf. Sci., 10.1016/j.jcis.2021.08.180. (8.128, CA*)

[17]. Y. Mei, et al., Int. J. Hydrogen Energy, 10.1016/j.ijhydene.2021.08.171. (5.816, CA*)

[16]. N. Liu, et al., ACS Appl. Mater. Inter., 10.1021/acsami.1c10043. (9.229)

[15]. H. Li, et al., Chem. Commun., 10.1039/D1CC02468J. (6.222, CA*)

[14]. Y. Wang, et al., ChemElectroChem, 10.1002/celc.202100313. (4.590, CA*)

[13]. Q. Huang, et al., Chem. Eng. J., 10.1016/j.cej.2021.130336. (13.273, CA*)

[12]. C. Han, et al., J. Power Sources, 10.1016/j.jpowsour.2021.229947. (9.127, CA*)

[11]. Y. Guo, et al., Int. J. Hydrogen Energy, 10.1016/j.ijhydene.2021.04.084. (5.816, CA*)

[10]. L. Wei, et al., Mater. Lett., 10.1016/j.matlet.2021.129839. (3.423, CA*)

[9]. D. Chen, et al., Green Energy Environ., 10.1016/j.gee.2021.04.003. (8.207, CA*)

[8]. L. Chai, et al., Small, 10.1002/smll.202100607. (13.281, CA*)

[7]. X. Wang, et al., CHEM-EUR J., 10.1002/chem.202005415. (5.236, CA*)

[6]. J. Ding, et al., Carbon, 10.1016/j.carbon.2021.01.160. (9.594, CA*)

[5]. L. Zhong, et al., J. Power Sources, 10.1016/j.jpowsour.2021.229632. (9.127, CA*)

[4]. Q. Sun, et al., ChemElectroChem, 10.1002/celc.202001588. (4.590, CA*)

[3]. L. Zhong, et al., Coordin. Chem. Rev., 10.1016/j.ccr.2021.213804. (22.315, CA*)

[2]. Q. Huang, et al., Micropor Mesopor. Mat., 10.1016/j.micromeso.2020.110868. (5.455, CA*)

[1]. L. Chai, et al., Carbon, 10.1016/j.carbon.2020.12.070. (9.594, CA*)


2020

[21]. Y. Wang, et al., Chem. Commun., 10.1039/D0CC06095J (5.996, CA*)

[20]. Y. Guo, et al., Int. J. Hydrogen Energy, 10.1016/j.ijhydene.2020.10.121 (4.939, CA*)

[19]. X. Wang, et al., Small, 10.1002/smll.202004614 (11.459, CA*)

[18]. Y. Mei, et al., Chem. Commun., 10.1039/D0CC06049F (6.164, CA*)

[17]. T. Li, et al., Inorg. Chem., 10.1021/acs.inorgchem.0c01977 (4.825)

[16]. J. Wu, et al., Chem. Commun., 10.1039/D0CC05439A (6.164, CA*)

[15]. J. Zhang, et al., Chem. Commun., 10.1039/D0CC04683C (6.164, CA*)

[14]. X. Wang, et al., Chem. Commun., 10.1039/D0CC04015K. (6.164, CA*)

[13]. J. Ding, et al., Electrochim. Acta, 10.1016/j.electacta.2020.136716. (6.215, CA*)

[12]. Y. Mei, et al., J. Mater. Sci., 10.1007/s10853-020-04971-2 (3.553)

[11]. Y. Wang, et al., Chem. Commun., 10.1039/D0CC03132A (6.164, CA*)

[10]. X. Wang, et al., J. Power Sources, 10.1016/j.jpowsour.2020.228302 (8.247, CA*)

[9]. Q. Huang, et al., Nanoscale, 10.1039/D0NR02007A (6.970, CA*)

[8]. H. Li, et al., Int. J. Hydrogen Energy, 10.1016/j.ijhydene.2020.03.198 (4.939)

[7]. L. Chai, et al., Nanoscale, 10.1039/D0NR00511H (6.970, CA*)

[6]. Q. Li, et al., Crystals, 10.3390/cryst10030222 (2.404, CA*)

[5]. Q. Li, et al., CrystEngComm, 10.1039/D0CE00228C (3.38, CA*)

[4]. Y. Xu, et al., Energy Technol., 10.1002/ente.202000059 (3.404, CA*)

[3]. L. Zhong, et al., Inorg. Chem., 10.1021/acs.inorgchem.9b03009 (4.850, CA*)

[2]. L. Chai, et al., Adv. Sci., 10.1002/advs.201903195 (15.840, CA*, ESI 1%, Hot Paper 0.1%)

[1]. Q. Li, et al., RSC Adv., 10.1039/C9RA08983G (3.119, CA*)


2019

[16]. Y. Wang, et al., Nano Lett., 10.1021/acs.nanolett.9b04219 (12.279, CA*)

[15]. J. Ding, et al., Sensors Actuat. B-Chem., 10.1016/j.snb.2019.127551 (7.100, CA*)

[14]. Y. Wu, et al., ACS Appl. Mater. Inter., 10.1021/acsami.9b17348 (8.456)

[13]. L. Chai, et al., Carbon, 10.1016/j.carbon.2019.11.046 (8.821, CA*)

[12]. Q. Li, et al., Chinese J. Struc. Chem., 10.14102/j.cnki.0254-5861.2011-2338 (0.659, CA*)

[11]. X. Wang, et al., J. Power Sources, 10.1016/j.jpowsour.2019.227158 (7.467, CA*)

[10]. Y. Rong, et al., Int. J. Hydrogen Energy, 10.1016/j.ijhydene.2019.09.042 (4.229)

[9]. L. Chai, et al., Electrochim. Acta, 10.1016/j.electacta.2019.134680 (5.116, CA*)

[8]. Q. Li, et al., Dalton Trans., 10.1039/C9DT02103E (4.099)

[7]. Y. Du, et al., CrystEngComm, 10.1039/C9CE01076A (3.304, CA*)

[6]. Q. Zhou, et al., Electrochim. Acta, 10.1016/j.electacta.2019.06.082 (5.383)

[5]. X. Wang, et al., Nano Energy, 10.1016/j.nanoen.2019.06.002 (15.548, CA*)

[4]. L. Xu, et al., Mater. Lett., 10.1016/j.matlet.2019.04.003 (3.019, CA*)

[3]. T. Li, et al., Electrochim. Acta, 10.1016/j.electacta.2019.03.183 (5.116)

[2]. Y. Yu, et al., Colloid Surface A, 10.1016/j.colsurfa.2019.03.037 (3.131)

[1]. L. Chai, et al., Carbon, 10.1016/j.carbon.2019.02.006 (7.466, CA*, ESI 1%)


2018

[6]. X. Wang, et al., Carbon, 10.1016/j.carbon.2018.10.023 (7.082, CA*, ESI 1%)

[5]. Q. Li, et al., Polyhedron, 10.1016/j.poly.2018.08.055 (2.067, CA*)

[4]. Q. Zhou, et al., J. Mater. Chem. A, 10.1039/C8TA03120G (9.931)

[3]. Z. Zhu, et al., CrystEngComm, 10.1039/C8CE00613J (3.474, CA*)

[2]. J. Qian, et al., Cryst. Growth Des., 10.1021/acs.cgd.7b01765 (4.055, CA*)

[1]. Q. Zhou, et al., ACS Appl. Energy Mater., 10.1021/acsaem.8b00076 (4.473)


2017

[11]. J. Qian*, et al., Chem. Commun., 10.1039/C7CC07853F (6.319, CA*)

[10]. J. Qian*, et al., Dalton Trans., 10.1039/C7DT03255B (4.029, CA*)

[9]. L. Liang, et al., Nature Commun., 10.1038/s41467-017-01166-3 (12.124, ESI 1%)

[8]. T. Li, et al., Dalton Trans., 10.1039/C7DT03033A (4.029)

[7]. J. Qian*, et al., CrystEngComm, 10.1039/C7CE01195D (3.474, CA*)

[6]. Y. Wu, et al., Cryst. Growth Des., 10.1021/acs.cgd.7b00598 (4.055)

[5]. Q. Li, et al., Inorg. Chim. Acta, 10.1016/j.ica.2017.03.006 (1.918, CA*)

[4]. S. Wang, et al., Dalton Trans., 10.1039/C6DT03830A (4.177)

[3]. Y. Wu, Jet al., Inorg. Chem., 10.1021/acs.inorgchem.6b02491 (4.820)

[2]. Q. Li, et al., CrystEngComm, 10.1039/C6CE02281B (3.849, CA*)

[1]. Q. Li, et al., Z. Anorg. Allg. Chem., 10.1002/zaac.201600356 (1.261, CA*)


2016

[9]. G. Wang, et al., CrystEngComm, 10.1039/C6CE01954D (3.849)

[8]. J. Qian*, et al., CrystEngComm, 10.1039/C6CE01801G (3.849, CA*)

[7]. L. Liang, et al., J. Mater. Chem. A, 10.1039/c6ta04927c (8.262)

[6]. T. Li, et al., RSC Adv., 10.1039/C6RA18781A (3.289)

[5]. Q. Li, et al., Micropro. Masopor. Mat., 10.1016/j.micromeso.2016.07.018 (3.349, CA*)

[4]. P. Yu, et al., Chem. Commun., 10.1039/C6CC03497G (6.567, CA*)

[3]. Q. Li, et al., Z. Anorg. Allg. Chem., 10.1002/zaac.201600033 (1.261, CA*)

[2]. K. Su, et al., CrystEngComm, 10.1039/C6CE00092D (3.849)

[1]. J. Qian*, et al., Chem. Commun., 10.1039/C5CC10359B (6.567, CA*)

X-mol专页报道InOF-14,链接: http://www.x-mol.com/news/1985


2015

[10]. Q. Li, et al., RSC Adv., 10.1039/C5RA07602A (3.289)

[9]. J. Qian*, et al., CrystEngComm, 10.1039/C5CE01376C (3.849, CA*)

[8]. L. Zhang, et al., J. Mater. Chem. A, 10.1039/C5TA03493K (8.262)

[7]. Y. Yang, et al., J. Mater. Chem. A, 10.1039/C5TA00720H (8.262)

[6]. K. Su, et al., RSC Adv., 10.1039/C5RA02530C (3.289)

[5]. K. Su, et al., Inorg. Chem., 10.1021/ic502677g (4.820)

[4]. J. Qian, et al., Cryst. Growth Des., 10.1021/cg501795w (4.425)

[3]. K. Su, et al., Inorg. Chem. Commun., 10.1016/j.inoche.2015.01.035 (1.762)

[2]. K. Su, et al., CrystEngComm, 10.1039/C4CE02186J (3.849)

[1]. J. Pan, et al., CrystEngComm, 10.1039/C4CE02351J (3.849)


2014

[16]. J. Qian, et al., Chem. Commun., 10.1039/C4CC07611G (6.567)

[15]. J. Qian, et al., Inorg. Chem., 10.1021/ic501728z (4.820)

[14]. J. Pan, et al., CrystEngComm, 10.1039/C4CE01959H (3.849)

[13]. K. Su, et al., Cryst. Growth Des., 10.1021/cg5010903 (4.425)

[12]. Q. Li, et al., CrystEngComm, 10.1039/C4CE01414F (3.849)

[11]. Q. Li, et al., RSC Adv., 10.1039/C4RA04505J (3.289)

[10]. L. Zhang, et al., Nanoscale, 10.1039/C4NR00348A (7.394, ESI 1%)

[9]. J. Qian, et al., CrystEngComm, 10.1039/C4CE00712C (3.849)

[8]. K. Su, et al., Cryst. Growth Des., 10.1021/cg5003836 (4.425)

[7]. J. Pang, et al., Chem. Commun., 10.1039/C3CC48381A (6.567)

[6]. Q. Li, et al., Dalton Trans., 10.1039/C3DT53214C (4.177)

[5]. J. Qian, et al., Chem. Commun., 10.1039/C3CC48556K (6.567)

[4]. M. Wu, et al., Chem. Commun., 10.1039/C3CC46779A (6.567)

[3]. X. Li, et al., Inorg. Chem., 10.1021/ic402481b (4.820)

[2]. K. Su, et al., Inorg. Chem., 10.1021/ic4024184 (4.820)

[1]. K. Su, et al., Inorg. Let., 2014; 1, 1-8. (pending)


2013

[3]. J. Qian, et al., J. Mater. Chem. A, 10.1039/C3TA12391J (8.262)

[2]. K. Su, et al., Inorg. Chem., 10.1021/ic302367q (4.820)

[1]. J. Qian, et al., J. Mater. Chem. A, 10.1039/C3TA11548H (8.262)


2012

[1]. J. Qian, et al., Chem. Commun., 10.1039/C2CC35068H (6.567)

Copyright © 2013 浙江省碳材料技术研究重点实验室 版权所有 技术支持:捷点科技